

Supplemental Information for West et al., Vertical mantle flow associated with a lithospheric drip beneath the Great

Basin

Supplementary Methods Shear wave splitting analysis

A host of evidence suggests that the primary cause of seismic anisotropy in the upper mantle is the lattice-preferred orientation (LPO) of crystallographic axes of elastically anisotropic minerals¹⁻³. When olivine is subjected to deformation via dislocation creep as is thought to occur in the upper mantle, the a-axis of the olivine crystals tends to align with the direction of the shear plane under conditions of simple shear and strain >150%². Assuming finite strain is generated over time periods of several My, LPO develops in the upper mantle with the fast axis direction aligned with the direction of flow. Thus, shear-wave splitting is often used as a proxy for mantle flow. While the maximum depth of upper mantle anisotropy is still debated, olivine (the dominant upper mantle mineral) likely deforms in the dislocation creep regime (the deformation regime in which LPO can develop) to depths of 200-400 km⁴. It is also important to note that the relationship between splitting fast direction and mantle flow is only valid in cases of long-term simple shear in dry olivine, as more complex flow patterns, low strain rates, strain accommodated by diffusion creep, and/or the presence of water in the system can alter the relationship between mantle flow and direction of seismic anisotropy⁵⁻⁷.

When a seismic shear wave passes through an anisotropic material, its energy is split into two orthogonal components which travel at differing velocities. These two components arrive at the measuring instrument separated by a splitting delay time (dt). We utilized the method of Silver and Chan⁸ and the SplitLab analysis tool set⁹ to determine dt and the fast polarization direction of the axis of transmission (φ) for each event/station pair. We performed shear-wave splitting analyses by first selecting events with $m_b \ge 5.8$ and epicentral distances between 85 and 130 degrees. All seismograms were bandpass filtered at .02-0.2 Hz, and the time window around the SKS phase was chosen in each case for best and most stable results. Supplementary Figure 1 shows a typical splitting measurement. In this study, we present new shear wave splitting results from 139 broadband seismic stations around the Great Basin region. 106 of these stations are from the USArray Transportable Array (TA), while the other 33 are permanent regional stations. Results from this study include only those measurements exhibiting clear and well-resolved splitting parameters, for a total of 628 new shear wave splitting measurements (Supplementary Table 1) from 148 seismic events (Supplementary Table 2). We note that at many of the longlived seismic stations, backazimuthal variations in splitting parameters are evident, suggesting the likelihood of complexity in the overall anisotropic character beneath these stations. However, these are generally second-order effects and do not strongly influence the conclusions draw in the work presented here. These new results substantially improve our understanding of anisotropic structure beneath the Great Basin, particularly when combined with existing shear wave splitting measurements in the region ¹⁰⁻²⁷

Supplementary Figure 1: Typical shear-wave splitting measurement. Screen shot of a typical shear-wave splitting measurement in SplitLab, showing radial and transverse seismograms of the SKS phase, particle motion plots, and cross-correlation plots.

Seismic tomography and resolution tests

The P-wave seismic tomography model presented in this study, NWUS08-P2, is a significant update from the original model presented in Roth et al.²⁸ That paper contains supplementary material concerning the data and methodology used in the inversion for P-wave relative delay times. The model presented here includes data for 526 stations and 363 events, with a total of 38,908 raypaths used in the inversion.

The remaining supplementary information presented here focuses on the resolution of the cylinder of increased velocities beneath the central Great Basin (the "Nevada Cylinder" as termed in Roth et al.²⁸). The structural resolution tests of the tomographic model are performed using the VanDecar²⁹ method. In this formulation, model seismic structures are built by assigning slowness values at a series of knots within the model space, with a Gaussian-tapered variation in slowness between peak values. We then utilize these models to predict the relative delay times measured at the receivers using raypaths calculated for each source-receiver pair (assuming a 1D velocity model). In order to approximate the effects of timing and event location errors, we add random noise (+/- ≤ 0.3 s) to the delay times predicted from the forward models. We invert the relative delay time dataset simultaneously for the slowness perturbation field, earthquake relocations, and station terms, in order to see if the input structure is well recovered in the inversion. Earthquake relocation parameters absorb contributions to the delay

times from Earth structure outside of the array, while station terms absorb contributions from unknown shallow structure that cannot be resolved by the inversion.

It is necessary to confirm the resolution of the dip and depth extent of near-vertically oriented structures such as the Nevada Cylinder, since we know that these types of structures can be streaked downward into the tomographic model given the steep incidence of raypaths used in our inversion. In order to validate our inferred depth extent of the Nevada Cylinder, we developed a series of structural resolution tests in which we emplaced a 100 km diameter cylindrical increased velocity (+5 %) anomaly. The top of the anomaly is located at the surface (0 km depth), and we tested a series of models where the maximum depth of the cylinder ranged from 200 km to 600 km. Further, we examined a range of models where the dip of the cylinder ranged from vertical to 60°. Examples of these resolution tests are shown in Supplementary Figure 2.

Results of the resolution tests demonstrate that the lateral location of the cylinder is well resolved as previously noted²⁸. As expected, the dip of vertical cylinders is not well resolved, but the dip of non-vertical, steeply dipping, cylinders is well resolved. In all tests, the depth extent of the cylinder is well resolved. We note that Roth et al.²⁸ suggested that the maximum depth of the Nevada Cylinder was ~300 km. The results of these resolution tests demonstrates that the improved coverage from our new inversion demonstrates that the cylinder extends to depths of at least 500 km and perhaps deeper, and that we have correctly imaged the cylinder dip.

It is possible that the Nevada Cylinder may be enhanced by radial anisotropy in the crust and/or mantle. Shallow structures, such as those from radial anisotropy in the crust, will be effectively removed by the station terms computed during the inversion²⁸, resulting in little to no effect of crustal radial anisotropy in the model. However, drip-induced downwelling flow would be expected to generate radially-oriented mantle anisotropy in the immediate vicinity of the downwelling, depending upon the strain rates and elapsed time since the initiation of flow. Such an orientation of anisotropic fast axis would have the effect of strengthening the P-wave tomographic signature of the cylindrical feature. However, we note that preliminary S-wave tomographic models using the same inversion method presented here³⁰ also image the cylinder of higher velocities. This indicates that the higher velocities are not due solely to radial anisotropy, which would not significantly influence the S-wave tomographic model, but rather must originate from some combination of thermal and compositional anomalies. This result is further supported by regional surface wave models, which also indicate the presence of the cylinder³¹.

Supplementary Figure 2: Sample of results of tomographic resolution tests for Nevada Cylinder location and depth extent. Colors represent recovered velocity perturbation from 3% forward model. Both the Nevada Cylinder and the southern margin of the Juan de Fuca slab are included in these models. (a) Map view at 200 km depth. Oval denotes location of modeled Nevada Cylinder; dashed line marks cross sections shown in (b) and (c). Blue zone demonstrates that the lateral location of the cylinder is recovered well. (b) Cross section for a model in which the Nevada cylinder extends to depths of ~650 km at a 75° tilt. Solid lines denote initial anomalies used in the test. The depth extent and tilt of the cylinder is recovered well. (c) Cross section for a model in which the Nevada cylinder extends to depths of \sim 550 km at a 60° tilt. Solid lines denote initial anomalies used in the test. The depth extent and tilt of the cylinder is recovered well.

Geodynamic numerical modeling of lithospheric drips

The numerical experiments are produced using a two-dimensional axisymmetric finite element fluid dynamic code called SSAXC^{32,33}. The models include a lithosphere with a flat lower boundary (i.e., no lithospheric root) into which a region of higher-density material has been injected. This denser material is an analog of magmatic flux that has frozen as an eclogite, or has left behind dense mafic cumulates. This material is therefore both denser and warmer than the surrounding lithosphere, and it has a different composition. The denser composition is modeled as a half cosine wave in x with a maximum at the left side of the axisymmetric model box, falling to zero in the positive x direction, and a half cosine wave in z, with a maximum at the bottom of the mantle lithosphere, falling to zero vertically in z. The width of the dense regions is equivalent to 80 km. Temperature is also added to the lithosphere in the same pattern, bringing the region of intrusion closer to the mantle temperature beneath and correspondingly lowering its viscosity. We examine a range of experiments in which we vary the thickness, position, and density contrast of the dense region, as well varying the reference mantle viscosity. The models at several time steps are shown in Supplementary Figures 3-7, and a summary of the experiments is given in Supplementary Table 3. In some numerical experiments the density and temperature is added throughout the thickness of the lithosphere, and in others through only half the thickness of the lithosphere.

Supplementary Figure 3: Geodynamic model 3540. Model parameters are listed in Supplementary Table 3.

Supplementary Figure 4: Geodynamic model 3540h. Model parameters are listed in Supplementary Table 3.

Supplementary Figure 5: Geodynamic model 3540L. Model parameters are listed in Supplementary Table 3.

Supplementary Figure 6: Geodynamic model 3540v. Model parameters are listed in Supplementary Table 3. **Supplementary Figure 7: Geodynamic model 35401.** Model parameters are listed in Supplementary Table 3. This model also shown as Figure 3 in main article.

8

8

8

800

80

8

250

Supplementary T	able 3: Pa	rameters and	results fo	or geod	ynamic model	s.
						T

Model	3540	3540h	3540L	3540v	35401
Mantle reference	10^{19}	10^{19}	10^{19}	10^{20}	10 ¹⁹
viscosity (Pa s)					
Seed density	3%	3%	3%	3%	1%
contrast					
Seed density	40	20	20	40	40
thickness (km)					
Seed density	75	55	75	75	75
depth (km)					
Approximate	110	12	92	9	33
drip velocity					
(mm/yr)					

A buoyant crust is included above the mantle lithosphere and its density anomaly^{34,35}. The crust differs from the mantle lithosphere in these models only in its buoyancy. The modeled crust and mantle lithospheric material both possess the same temperature dependence of viscosity and the same thermal diffusivity as the underlying convecting mantle, though the cooler temperatures in the lithosphere and crust produce higher viscosities.

The model box consists of a 100 by 100 grid of nodes that correspond to a domain of 250 by 250 km. The left-hand side of the model box is an axis of symmetry. The bottom and right sides have flow-through boundary conditions, and the top is a free-slip boundary with its temperature set to the nondimensional equivalent of 20°C. The code solves nondimensional equations for flow as given in³⁶ comprises an equation of motion,

$$\nabla \bullet (\eta \dot{\varepsilon}) - \nabla P = (RaT - Ra_c \Gamma) \dot{z}, \qquad (1)$$

a statement of incompressibility,

$$\nabla \bullet v = 0, \tag{2}$$

an advection-diffusion equation for temperature,

$$\frac{\partial T}{\partial t} + (v \bullet \nabla)T = \nabla^2 T , \qquad (3)$$

and an advection equation for composition,

$$\frac{\partial \Gamma}{\partial t} + (v \bullet \nabla)\Gamma = 0, \tag{4}$$

depending upon viscosity (η), the deviatoric strain rate tensor ($\dot{\varepsilon}$), dynamic pressure (P), thermal and compositional Rayleigh numbers (Ra and Ra_c , given below), composition (Γ), velocity (v), temperature (T), time (t), and the unit vector in the direction of gravity (\hat{z}).

Both temperature and composition contribute to buoyancy. Thermal buoyancy is determined by the Raleigh number, containing terms for density (ρ), gravity (g), thermal expansivity (α), temperature range across the model box (ΔT), height of the model box (h), reference viscosity (η_o), and thermal diffusivity (κ):

$$Ra = \frac{\rho g \, \alpha \Delta T h^3}{\eta_o \kappa} = 2 \times 10^6.$$
⁽⁵⁾

Both the negative buoyancy of the dense lower lithosphere and the positive buoyancy of the crust are measured by the compositional Rayleigh number,

$$Ra_{c} = \frac{\Delta\rho gh^{3}}{\eta_{o}\kappa} = Ra\left[\frac{\Delta\rho}{\rho\alpha\Delta T}\right]$$
(6)

in which $\Delta \rho$ is the difference between the densities of the lower lithospheric composition and the adjoining asthenosphere. The dense material in the lithosphere is set to a 1%-3% density increase over adjacent mantle lithosphere, and its maximum temperature addition is 10% above the

ambient asthenospheric temperature, consistent with heats of fusion. The buoyant crust is set to a 12% density decrease when compared to reference mantle density.

Viscosity is calculated in most experiments using the following Newtonian law:

$$\eta_{Newtonian.} = \eta_o \exp\left(\frac{E + Vz}{T + T_o} - \frac{E + Vz_o}{1 + T_o}\right),\tag{7}$$

where η_o , z_o , and T_o are reference values for viscosity, depth, and temperature, respectively; *E* is the activation energy, and *V* is the reference volume (Supplementary Table 4). The importance of the temperature dependence of viscosity is investigated by using values for the activation energy *E* equivalent to either 250 or 500 kJ/mol. The reference mantle temperature T_o is 1300°C.

A starting condition for each numerical experiment was created by using a complementary error function cooling law to make a cooled lithosphere of the desired depth, employing the temperature at the surface (T_S) , the temperature of the convecting mantle (T_M) , thermal diffusivity (κ), and the time period of thermal diffusion (τ)³⁷:

$$T(z) = \left(T_{S} - T_{M}\right) \operatorname{erfc}\left[\frac{z}{2(\kappa\tau)^{0.5}}\right] + T_{M}$$
(8)

to create a lithosphere of 75 km thickness. There is no imposed initial mantle flow field.

Any melt produced by dry adiabatic melting in convection currents associated with the gravitational instability is calculated with a post-processor routine using the parameters listed in Supplementary Table 4. This postprocessor routine uses the mantle flow fields to calculate the volume of asthenospheric material moving above its solidus during each time step of the numerical calculations. Melt is produced at a rate of 0.1% per degree rise above the solidus, which is fitted to experimental data on the continental fertile peridotite KLB-1^{38,39}. The models presented here do not produce melt.

The surface topography resulting from stresses imposed on the lithosphere by the density anomaly and its subsequent gravitational instability are calculated from differential stress values at the surface produced by the numerical calculations. The magnitude of topography calculated from deviatoric stress output from numerical models is highly dependent upon the scaling parameters used. Here we use the same scaling parameters used for the numerical experiments themselves. If other scaling rules are used, the magnitude of the topographic expression will change, but not its sense. Only minimal topographic deviation is produced by this minimally dense downwelling material, as covered in detail in an earlier paper by Elkins-Tanton⁴⁰.

Supplementary Table 4: Parameters common to numerical models of dripping lithosphere.

Parameter	Symbol	Value
Height and width of model box	h	250 km
Number of nodes in each dimension of the		100
model box		
Reference mantle density	ρ	$3,300 \text{ kg/m}^3$
Crustal density		$2,900 \text{ kg/m}^3$

Reference viscosity	η_0	10^{19} - 10^{20} Pa s
Thermal expansivity	α	3×10 ⁻⁵ /°
Thermal diffusivity	K	$1 \times 10^{-6} \text{ m}^2/\text{s}$
Rayleigh number	Ra	2×10^{6}
Density contrast between altered lower	Δρ	1%-3%
lithosphere and asthenosphere		
Compositional Rayleigh number	Ra_c	5×10 ⁵
Mantle potential temperature	T_p	1,300°C
Heat capacity of silicates	C_P	1256.1 J/°kg
Heat of fusion of silicates	H_{f}	418,700 J/kg

Estimates of the volume of the Great Basin Drip

Tomographic images of the Great Basin Drip show a structure which can be approximated as a near-vertical cylinder of diameter ~100 km, and extending from the base of the lithosphere at a depth of ~75 km to a depth of at least 500 km and perhaps deeper. The near-surface structure is not well resolved using our methods, and below 500 km depth the drip appears to merge with a larger high-velocity region. We image a well-resolved NE dip to the cylinder from which we deduce that the possible length of the drip may be as much as 500 km. Our range of geodynamic models of the drip in many cases show effective drip radii smaller than 50 km, we therefore evaluate a range of possible drip radii ranging from 25 to 50 km and a maximum sublithospheric drip length of 500 km. We used these values to make a very rough estimate of cylinder volume, which ranges from 1 to 4 million km³.

In our geodynamic models, the source of the drip draws material from a wide volume, which can be approximated as a disk near the base of the lithosphere incorporating both lithospheric and asthenospheric material. Assuming that the radius of the source disk is ~10 times that of the drip implies that the drip has drawn material from a disk ~250-500 km in radius. Given the drip volume range calculated above, the drip would draw material from a source disk thickness of ~5 km over the area of the source disk; smaller-diameter source disks would be thicker. The tradeoff between source disk radius, source disk thickness, and drip radius is shown in Supplementary Figure 8. We note, however, that these estimates are only meant to provide intuition regarding the regional effects of the volume drawn into the drip, since a much larger range of factors can influence regional lithospheric and asthenospheric modification.

Constraints on the mantle flow direction beneath the western U.S.

In the absence of background mantle flow, the Great Basin Drip would be expected to descend vertically into the mantle. However, resolution tests show that the dip of the high-velocity region is not due to smearing effects, and the dip angle is well resolved. Given the NE dip of the Great Basin Drip, we therefore infer that the mantle flow direction relative to the North American plate is ~NE, or opposite the direction of North American plate motion in the hotspot reference frame⁴¹. However, because it is not possible to estimate drip descent velocity given the wide range of parameters responsible for the downwelling, we are unable to estimate a more detailed mantle flow field at this point in time.

References:

- 1 Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. *Annu. Rev. Earth Planet. Sci.* **24**, 385-432 (1996).
- 2 Savage, M. K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? *Rev. Geophys.* **37**, 65-106 (1999).
- 3 Fouch, M. J. & Rondenay, S. Seismic anisotropy beneath stable continental interiors. *Phys. Earth Planet. Inter.* **158**, 292-320, doi:10.1016/j.pepi.2006.03.024 (2006).
- 4 Karato, S. & Wu, P. Rheology of the upper mantle a synthesis. *Science* **260**, 771-778 (1993).
- 5 Jung, H. & Karato, S. Water-induced fabric transitions in olivine. *Science* **293**, 1460-1463 (2001).
- 6 Kaminski, E. & Ribe, N. M. Timescales for the evolution of seismic anisotropy in mantle flow. *Geochem. Geophys. Geosyst.* **3**, doi:1051 10.1029/2001gc000222 (2002).
- 7 Lassak, T. M., Fouch, M. J., Hall, C. E. & Kaminski, E. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? *Earth Planet. Sci. Lett.* 243, 632-649, doi:10.1016/j.epsl.2006.01.022 (2006).
- 8 Silver, P. G. & Chan, W. W. Shear-wave splitting and subcontinental mantle deformation. *J. Geophys. Res.* **96**, 16429-16454 (1991).

- 9 Wüstefeld, A., Bokelmann, G., Zaroli, C. & Barruol, G. SplitLab: A shear-wave splitting environment in Matlab. *Comput. Geosci.* **34**, 515-528, doi:10.1016/j.cageo.2007.08.002 (2008).
- 10 Arizona State University Upper Mantle Anisotropy Database, <<u>http://geophysics.asu.edu/anisotropy/upper</u>> (2008).
- 11 Davis, P. M. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle. *J. Geophys. Res.* **108**, doi:2052 10.1029/2001jb000637 (2003).
- 12 Gök, R. *et al.* Shear wave splitting and mantle flow beneath LA RISTRA. *Geophys. Res. Lett.* **30**, doi:1614 10.1029/2002gl016616 (2003).
- 13 Hartog, R. & Schwartz, S. Y. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. *J. Geophys. Res.* **105**, 7909-7930 (2000).
- 14 Kubo, A. & Hiramatsu, Y. On presence of seismic anisotropy in the asthenosphere beneath continents and its dependence on plate velocity: Significance of reference frame selection. *Pure Appl. Geophys.*, 281-303 (1998).
- 15 Özalaybey, S. & Savage, M. K. Shear-wave splitting beneath western United States in relation to plate tectonics. *J. Geophys. Res.* **100**, 18135-18149 (1995).
- 16 Polet, J. & Kanamori, H. Anisotropy beneath California: shear wave splitting measurements using a dense broadband array. *Geophys. J. Int.* **149**, 313-327 (2002).
- 17 Savage, M. K. & Sheehan, A. F. Seismic anisotropy and mantle flow from the Great Basin to the Great Plains, western United States. *J. Geophys. Res.* **105**, 13715-13734 (2000).
- 18 Savage, M. K., Sheehan, A. F. & Lerner-Lam, A. Shear wave splitting across the Rocky Mountain Front. *Geophys. Res. Lett.* **23**, 2267-2270 (1996).
- 19 Savage, M. K. & Silver, P. G. Mantle deformation and tectonics constraints from seismic anisotropy in the western United States. *Phys. Earth Planet. Inter.* **78**, 207-227 (1993).
- 20 Savage, M. K., Silver, P. G. & Meyer, R. P. Observations of teleseismic shear-wave splitting in the Basin and Range from portable and permanent stations. *Geophys. Res. Lett.* **17**, 21-24 (1990).
- 21 Schutt, D., Humphreys, E. D. & Dueker, K. Anisotropy of the Yellowstone hot spot wake, eastern Snake River Plain, Idaho. *Pure Appl. Geophys.* **151**, 443-462 (1998).
- Sheehan, A. F., Jones, C. H., Savage, M. K., Özalaybey, S. & Schneider, J. M.
 Contrasting lithospheric structure between the Colorado Plateau and Great Basin: Initial results from Colorado Plateau Great Basin PASSCAL experiment. *Geophys. Res. Lett.* 24, 2609-2612 (1997).
- 23 Vinnik, L. P., Makeyeva, L. I., Milev, A. & Usenko, A. Y. Global patterns of azimuthal anisotropy and deformations in the continental mantle. *Geophys. J. Int.* **111**, 433-447 (1992).
- 24 Waite, G. P., Schutt, D. L. & Smith, R. B. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting. *J. Geophys. Res.* **110**, doi:B11304 10.1029/2004jb003501 (2005).
- 25 Walker, K. T., Bokelmann, G. H. R. & Klemperer, S. L. Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA. *Earth Planet. Sci. Lett.* **222**, 529-542, doi:10.1016/j.epsl.2004.03.024 (2004).

- 26 Wang, X. L. *et al.* Shear-wave splitting and mantle flow beneath the Colorado Plateau and its boundary with the Great Basin. *Bull. Seismol. Soc. Am.* **98**, 2526-2532, doi:10.1785/0120080107 (2008).
- 27 Xue, M. & Allen, R. M. Origin of the Newberry Hotspot Track: Evidence from shearwave splitting. *Earth Planet. Sci. Lett.* **244**, 315-322, doi:10.1016/j.epsl.2006.01.066 (2006).
- 28 Roth, J. B., Fouch, M. J., James, D. E. & Carlson, R. W. Three-dimensional seismic velocity structure of the northwestern United States. *Geophys. Res. Lett.* 35, 6, doi:L15304 10.1029/2008gl034669 (2008).
- 29 VanDecar, J. C. *Upper-mantle structure of the Cascadia subduction zone from non-linear teleseismic traveltime inversion* Ph.D. thesis, University of Washington, (1991).
- 30 Fouch, M. J., Roth, J. B., James, D. E. & Carlson, R. W. Seismic structure and tectonic evolution of the northwestern United States. *in prep.* (2008).
- 31 Yang, Y. J. & Ritzwoller, M. H. Teleseismic surface wave tomography in the western US using the Transportable Array component of USArray. *Geophys. Res. Lett.* **35**, doi:L04308 10.1029/2007gl032278 (2008).
- 32 King, S. D., Raefsky, A. & Hager, B. H. CONMAN Vectorizing a finite-element code for incompressible 2-dimensional convection in the Earth's Mantle. *Phys. Earth Planet. Inter.* **59**, 195-207 (1990).
- Elkins-Tanton, L. T. Continental magmatism caused by lithospheric delamination. in *Plates, Plumes, and Paradigms* Special Paper 388 (ed G.R. Foulger, Natland, J.H., Presnall, D.C., and Anderson, D.L.) 449–461 (Geological Society of America, Boulder, CO, 2005).
- 34 Neil, E. A. & Houseman, G. A. Rayleigh-Taylor instability of the upper mantle and its role in intraplate orogeny. *Geophys. J. Int.* **138**, 89-107 (1999).
- 35 Hoogenboom, T. & Houseman, G. A. Rayleigh-Taylor instability as a mechanism for corona formation on Venus. *Icarus* **180**, 292-307, doi:10.1016/j.icarus.2005.11.001 (2006).
- 36 van Keken, P. E. *et al.* A comparison of methods for the modeling of thermochemical convection. *J. Geophys. Res.* **102**, 22477-22495 (1997).
- 37 Turcotte, D. L. & Schubert, G. *Geodynamics*. 2nd edn, (Cambridge University Press, Cambridge, 2002).
- 38 Herzberg, C., Raterron, P. & Zhang, J. New experimental observations on the anhydrous solidus for peridotite KLB-1. *Geochem. Geophys. Geosyst.* 1, doi:10.1029/2000GC000089 (2000).
- 39 Takahashi, E., Shimazaki, T., Tsuzaki, Y. & Yoshida, H. Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. *Philos. Trans. R. Soc. London Ser.* A **342**, 105-120 (1993).
- 40 Elkins-Tanton, L. T. Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. *J. Geophys. Res.* **112**, doi:B03405 10.1029/2005jb004072 (2007).
- 41 Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. *Geophys. J. Int.* **150**, 321-361 (2002).

Supplementary Table 1: New shear wave splitting measurements presented in this study.

Phase, seismic phase; dt, splitting time, phi, fast polarization direction,

Event ID, events listed in Supplementary Table 2.

Station (degrees	Latitude s)	e(∫N) phi_erro	Longitud pr(degree	de(∫E) es)	Phase Event II	dt(sec))	dt_erroi	r(sec) phi
BMN	40.43	-117.22	SKS	.3	.1	-67	8	20030513a
BMN	40.43	-117.22	SKS	.4	.1	-67	5	19950629a
BMN	40.43	-117.22	SKS	.5	.1	-84	8	20020630a
BMN	40.43	-117.22	SKS	.6	.1	-74	7	19970904a
BMN	40.43	-117.22	SKS	.6	.1	-81	7	20000614a
BMN	40.43	-117.22	SKS	.6	.2	-85	8	19961105a
BMN	40.43	-117.22	SKS	.6	.2	77	8	19990913a
BMN	40.43	-117.22	SKS	.7	0	-85	6	19970525a
BMN	40.43	-117.22	SKS	.7	.1	-88	7	20030930b
BMN	40.43	-117.22	SKS	.8	.1	-86	5	20000815a
BMN	40.43	-117.22	SKS	.8	.2	-87	7	20030504a
BMN	40.43	-117.22	SKS	.9	.2	67	9	19950505a
BMN	40.43	-117.22	SKS	.9	.2	88	9	19990801a
BMN	40.43	-117.22	SKS	1.0	.1	82	7	19970503a
BMN	40.43	-117.22	SKS	1.1	.1	89	6	20000610a
BMN	40.43	-117.22	SKS	1.3	.3	78	9	20000621a
BMN	40.43	-117.22	SKS	1.5	.3	69	9	20041015a
BMN	40.43	-117.22	SKS	1.8	.1	-76	3	20010614a
BMN	40.43	-117.22	SKS	2.0	.1	-82	5	20040722a

SUF	PLEM	ENTA	RY INFORM	IATIO	N			DOI: 10.1038/NGEO52
	BMN	40.43	-117.22 SKS	2.1	.4	89	6	20020610a
	CCPE5	36.06	-117.79 SKS	1.6	.2	-74	6	19991101a
	CCPS2	36.06	-117.82 SKS	1.5	.1	77	11	19991101a
	CCPS5	36.05	-117.83 SKS	1.5	.1	84	7	19991101a
	DAN	34.63	-115.38 SKS	1.5	.2	-77	5	20011012a
	EDW2	34.88	-117.99 SKS	1.3	.1	70	9	20070130a
	EDW2	34.88	-117.99 SKS	1.4	.1	87	8	20041015a
	EDW2	34.88	-117.99 SKS	1.4	.2	68	13	20040722a
	EDW2	34.88	-117.99 SKS	1.5	.2	39	6	20050205c
	EDW2	34.88	-117.99 SKS	1.6	.1	-79	6	20051121a
	EDW2	34.88	-117.99 SKS	1.8	.1	-82	6	20051015a
	EDW2	34.88	-117.99 SKS	1.9	.1	89	6	20070906a
	ELFS	40.61	-120.73 SKS	1.1	.1	90	7	20070718a
	ELFS	40.61	-120.73 SKS	1.5	.1	64	8	20070726a
	ELFS	40.61	-120.73 SKS	2.2	.2	-79	4	20070820a
	ELK	40.74	-115.23 SKS	.3	.2	-43	9	20060218a
	ELK	40.74	-115.23 SKS	.5	.2	-75	8	20070404c
	ELK	40.74	-115.23 SKS	.6	.1	-69	6	20030513a
	ELK	40.74	-115.23 SKS	.6	.1	-83	7	20010603a
	ELK	40.74	-115.23 SKS	.6	.2	-87	7	20050723a
	ELK	40.74	-115.23 SKS	.7	.1	-36	5	19950629a
	ELK	40.74	-115.23 SKS	.7	.1	77	9	20041015a
	ELK	40.74	-115.23 SKS	.8	.2	-59	9	19950703a
	ELK	40.74	-115.23 SKS	.9	.1	-55	4	19960827a
	ELK	40.74	-115.23 SKS	.9	.1	-74	6	20000614a

DOI: 10.103	8/NGEO526	ı.		SU	PPLEN	MENT	ARY IN	IFORMATION
E	ELK	40.74	-115.23 SKS	.9	.1	-82	7	20030504a
E	ELK	40.74	-115.23 SKS	.9	.2	-73	8	20030427a
E	ELK	40.74	-115.23 SKS	.9	.2	-84	6	19990719a
E	ELK	40.74	-115.23 SKS	.9	.2	-84	6	20050711a
E	ELK	40.74	-115.23 SKS	1.0	.1	-50	4	19950117a
E	ELK	40.74	-115.23 SKS	1.0	.1	-75	5	20000815a
E	ELK	40.74	-115.23 SKS	1.0	.2	-73	6	20020630a
E	ELK	40.74	-115.23 SKS	1.0	.2	-84	5	20020819a
E	ELK	40.74	-115.23 SKS	1.0	.2	-84	7	20021004a
E	ELK	40.74	-115.23 SKS	1.1	.1	-57	1	19950117a
E	ELK	40.74	-115.23 SKS	1.3	.3	-78	9	20021210a
E	ELK	40.74	-115.23 SKS	1.4	.2	-81	9	20060226a
E	ELK	40.74	-115.23 SKS	2.1	.2	74	8	19991126a
G	GRA	36.99	-117.37 SKS	1.4	.1	90	7	20041015a
(GRA	36.99	-117.37 SKS	1.5	.2	-89	12	20070420a
G	GRA	36.99	-117.37 SKS	1.6	.1	76	5	20060516a
G	GRA	36.99	-117.37 SKS	2.3	.1	-77	6	20070403c
(SC	35.30	-116.81 SKS	.8	.2	80	13	19970813a
G	SC	35.30	-116.81 SKS	1.2	.2	-71	6	20060516a
G	SC	35.30	-116.81 SKS	1.5	.1	-58	3	19990420a
G	SSC	35.30	-116.81 SKS	1.7	.2	-83	4	19950823a
F	IATC	40.81	-121.46 SKS	1.2	.2	51	8	20070726a
F	IEC	34.82	-116.33 SKS	1.2	.1	69	6	20060516a
F	IEC	34.82	-116.33 SKS	1.2	.2	88	10	20050210a
F	IEC	34.82	-116.33 SKS	1.4	.2	-87	2	20070928f

SUF	PLEM	ENTA	RY INFOF	RMATIO	N			DOI: 10.1038/NGEO526
	HUMO	42.60	-122.96 SKS	5 1.6	.2	28	8	20070926a
	HUMO	42.60	-122.96 SKS	5 1.8	0	62	3	20070726a
	HUMO	42.60	-122.96 SKS	5 2.2	.2	53	6	20070731c
	HUMO	42.60	-122.96 SKS	5 2.3	.2	47	6	20070421a
	HUMO	42.60	-122.96 SKS	5 2.4	.1	60	4	20070820b
	HUMO	42.60	-122.96 SKS	5 2.4	.2	59	4	20070614b
	HUMO	42.60	-122.96 SKS	5 2.6	.2	62	8	20070317a
	HUMO	42.60	-122.96 SKS	5 2.7	.1	65	5	20070529b
	HUMO	42.60	-122.96 SKS	5 2.8	.1	66	4	20070722a
	J02A	43.36	-123.57 SKS	5 1.6	.1	60	6	20070117a
	J02A	43.36	-123.57 SKS	5 1.8	.1	77	4	20070726a
	J03A	43.37	-122.96 SKS	5 1.9	.1	70	4	20070726a
	J03A	43.37	-122.96 SKS	5 1.9	.1	51	6	20070722a
	J03A	43.37	-122.96 SKS	5 1.9	.2	46	7	20070421a
	J04A	43.24	-122.11 SKS	5 2.1	.1	86	2	20070726a
	J05A	43.28	-121.24 SKS	5 1.9	.2	86	5	20070726a
	J06A	43.25	-120.15 SKS	5 1.8	.2	-82	8	20070906a
	J07A	43.37	-119.31 SKS	5 1.2	.1	-83	10	20070805a
	J07A	43.37	-119.31 SKS	5 1.9	.2	-52	8	20070727a
	J07A	43.37	-119.31 SKS	5 2.2	.1	87	4	20070726a
	J08A	43.35	-118.47 SKS	5 2.2	.2	77	6	20070718a
	J08A	43.35	-118.47 SKS	5 2.2	.2	72	8	20070906a
	J08A	43.35	-118.47 SKS	5 2.3	.1	77	4	20070131a
	J08A	43.35	-118.47 SKS	5 2.6	.1	71	4	20070517a
	J09A	43.34	-117.75 SKS	5 1.8	0	72	4	20070726a

DOI: 10.1038/NGEO5	526		S	UPPL	EMENT	FARY	INFORMATION
J09A	43.34	-117.75 SKS	2.0	.1	69	7	20070820a
J09A	43.34	-117.75 SKS	2.1	.1	69	6	20070722b
J09A	43.34	-117.75 SKS	2.4	.1	80	2	20070722a
J09A	43.34	-117.75 SKS	2.5	.1	68	5	20070117a
J09A	43.34	-117.75 SKS	2.6	.2	79	6	20070820b
J10A	43.42	-116.77 SKS	1.7	.1	63	4	20070726a
J10A	43.42	-116.77 SKS	1.8	.2	-87	6	20070718a
J10A	43.42	-116.77 SKS	2.3	.2	-86	6	20070317a
J10A	43.42	-116.77 SKS	2.3	0	82	4	20070906a
J11A	43.41	-115.83 SKS	2.2	.2	-54	9	20070906a
J12A	43.25	-115.10 SKS	1.5	.2	-78	9	20070805a
J12A	43.25	-115.10 SKS	1.6	0	-89	6	20070906a
JCC	40.81	-124.03 SKS	1.4	.2	70	8	20070816a
KØ1A	42.80	-124.47 SKS	1.9	.1	77	6	20070726a
K02A	42.76	-123.49 SKS	1.8	.1	61	5	20070614b
K02A	42.76	-123.49 SKS	1.9	.2	-83	5	20070726a
K02A	42.76	-123.49 SKS	3.0	.1	34	4	20070421a
K05A	42.72	-120.89 SKS	1.8	.1	85	4	20070726a
K05A	42.72	-120.89 SKS	2.2	.2	73	8	20070317a
K05A	42.72	-120.89 SKS	2.7	.1	80	4	20070906a
K05A	42.72	-120.89 SKS	2.9	.2	76	2	20070529a
K06A	42.79	-120.25 SKS	1.6	.1	-78	7	20070516a
K06A	42.79	-120.25 SKS	2.1	.1	85	4	20070726a
K06A	42.79	-120.25 SKS	2.4	.1	-83	4	20070820a
K06A	42.79	-120.25 SKS	2.5	.1	-79	6	20070906a

SUF	PPLEM	ENTA	RY INFORM	1ATIOI	N			DOI: 10.1038/NGEO52
	K07A	42.69	-119.25 SKS	1.8	.1	85	3	20070928b
	K07A	42.69	-119.25 SKS	1.9	.2	87	5	20070726a
	K07A	42.69	-119.25 SKS	2.0	.1	-88	4	20070517a
	K07A	42.69	-119.25 SKS	2.1	.1	-88	6	20070906a
	K07A	42.69	-119.25 SKS	2.3	.1	88	4	20070529b
	K07A	42.69	-119.25 SKS	2.3	.2	79	7	20070820a
	K07A	42.69	-119.25 SKS	2.4	.2	81	6	20070131a
	K07A	42.69	-119.24 SKS	.5	.1	-55	7	20060815a
	K07A	42.69	-119.24 SKS	.6	.2	-64	7	20060807a
	K07A	42.69	-119.24 SKS	1.0	.2	-65	6	20070403c
	K07A	42.69	-119.24 SKS	1.0	.2	49	8	20070722a
	K07A	42.69	-119.24 SKS	1.4	.1	-87	8	20060811a
	K07A	42.69	-119.24 SKS	1.6	.1	-88	5	20060917a
	K07A	42.69	-119.24 SKS	1.9	.3	77	8	20060916a
	K07A	42.69	-119.24 SKS	2.1	.3	89	7	20070516a
	K07A	42.69	-119.24 SKS	2.2	.2	82	7	20070517a
	K07A	42.69	-119.24 SKS	2.4	.1	69	6	20060903a
	K07A	42.69	-119.24 SKS	2.4	.2	89	3	20070529b
	K08A	42.73	-118.48 SKS	.9	.2	-57	4	20061003a
	K08A	42.73	-118.48 SKS	1.0	.2	-61	8	20070404c
	K08A	42.73	-118.48 SKS	1.0	.2	-66	4	20060807a
	KØ8A	42.73	-118.48 SKS	1.0	.2	-67	5	20060807a
	KØ8A	42.73	-118.48 SKS	1.7	.1	-87	4	20060917a
	KØ8A	42.73	-118.48 SKS	1.7	.1	-87	4	20060917a
	K08A	42.73	-118.48 SKS	1.7	.2	-51	5	20070403c

DOI: 10.1038/NGEO	526		S	UPPLI	EMENT	TARY	INFORMATIC	N
K08A	42.73	-118.48 SKS	1.7	.3	74	9	20060916a	
K08A	42.73	-118.48 SKS	1.9	.2	88	7	20070517a	
K08A	42.73	-118.49 SKS	1.7	.1	-86	5	20070928b	
K08A	42.73	-118.49 SKS	1.8	.2	-84	6	20070403c	
K08A	42.73	-118.49 SKS	2.0	.1	-85	6	20070517a	
K08A	42.73	-118.49 SKS	2.1	.2	47	10	20070529b	
K08A	42.73	-118.49 SKS	2.2	.1	78	6	20070726a	
K08A	42.73	-118.49 SKS	2.4	.1	90	4	20070906a	
K09A	42.69	-117.72 SKS	1.2	.1	-83	4	20060807a	
K09A	42.69	-117.72 SKS	1.3	.2	89	4	20070516a	
K09A	42.69	-117.72 SKS	1.5	.3	84	8	20060917a	
K09A	42.69	-117.72 SKS	2.0	.4	74	9	20070529b	
K09A	42.69	-117.72 SKS	2.3	.2	67	6	20060811a	
K09A	42.70	-117.73 SKS	1.4	.2	-80	10	20070727a	
K09A	42.70	-117.73 SKS	1.7	.1	44	8	20070820a	
K09A	42.70	-117.73 SKS	1.8	.2	75	8	20070529b	
K09A	42.70	-117.73 SKS	2.0	.1	88	4	20070928b	
K09A	42.70	-117.73 SKS	2.4	.1	89	4	20070131a	
K09A	42.70	-117.73 SKS	2.5	.2	75	6	20070517a	
K09A	42.70	-117.73 SKS	2.8	.2	48	6	20070420a	
K10A	42.77	-116.87 SKS	1.2	.1	-57	5	20070404c	
K10A	42.77	-116.87 SKS	1.4	.3	-54	6	20070403a	
K10A	42.77	-116.87 SKS	1.8	.2	-77	8	20070718a	
K10A	42.77	-116.87 SKS	2.1	.2	-81	6	20070517a	
K10A	42.77	-116.87 SKS	1.4	.1	-39	4	20070404c	

SUI	PLEM	ENTA	RY INFORM	IATIO	N			DOI: 10.1038/NGE0526
	K10A	42.77	-116.87 SKS	1.5	.2	-51	10	20070927a
	K10A	42.77	-116.87 SKS	1.6	.1	-82	5	20070718a
	K10A	42.77	-116.87 SKS	1.9	.2	-89	6	20070517a
	K10A	42.77	-116.87 SKS	2.0	.1	-86	6	20070906a
	K11A	42.77	-116.03 SKS	1.4	.1	-40	6	20070927a
	K11A	42.77	-116.03 SKS	1.5	.1	-73	6	20070517a
	K11A	42.77	-116.03 SKS	1.5	.1	-62	9	20070404c
	K11A	42.77	-116.03 SKS	1.6	0	-71	4	20070727a
	K11A	42.77	-116.03 SKS	1.8	.2	-32	8	20070616b
	K11A	42.77	-116.03 SKS	1.8	.2	-77	6	20070906a
	K11A	42.77	-116.03 SKS	2.6	.1	-36	4	20070402a
	K11A	42.77	-116.03 SKS	1.3	.2	-76	5	20070516a
	K11A	42.77	-116.03 SKS	1.5	.2	-88	5	20070718a
	K11A	42.77	-116.03 SKS	1.5	.3	-75	7	20070517a
	K11A	42.77	-116.03 SKS	1.6	.2	-70	8	20070404c
	K11A	42.77	-116.03 SKS	1.7	.3	-75	9	20070403a
	K11A	42.77	-116.03 SKS	1.8	.2	-70	5	20070717a
	K11A	42.77	-116.03 SKS	1.9	.2	80	7	20070325a
	K12A	42.63	-114.90 SKS	1.3	.2	-78	9	20070517a
	L02A	42.15	-123.60 SKS	1.2	.2	9	7	20070421a
	L02A	42.15	-123.60 SKS	1.6	.1	71	8	20070726a
	L04A	42.17	-121.89 SKS	1.5	.2	33	10	20070731c
	L04A	42.17	-121.89 SKS	2.4	.1	53	4	20070421a
	L05A	42.04	-120.83 SKS	1.2	.1	56	10	20070820a
	L05A	42.04	-120.83 SKS	1.4	0	64	2	20070726a

DOI: 10.1038/NGEO5	26		S	UPPLI	EMENT	FARY	INFORMATIO	Ν
L05A	42.04	-120.83 SKS	1.8	.1	80	6	20070906a	
L07A	42.01	-119.34 SKS	.9	.1	-77	6	20070404c	
L07A	42.01	-119.34 SKS	1.5	.2	88	6	20070516a	
L07A	42.01	-119.34 SKS	1.7	.2	-66	6	20070718a	
L07A	42.01	-119.34 SKS	2.0	.1	67	3	20060917a	
L07A	42.01	-119.34 SKS	2.1	.3	77	5	20060916a	
L07A	42.01	-119.34 SKS	3.2	.2	-82	2	20060624a	
L07A	42.01	-119.34 SKS	1.0	.2	-40	4	20070927a	
L07A	42.01	-119.34 SKS	1.5	.2	70	8	20070726a	
L07A	42.01	-119.34 SKS	1.9	.2	84	9	20070718a	
L07A	42.01	-119.34 SKS	2.3	.1	-85	4	20070906a	
L08A	42.19	-118.34 SKS	1.9	.1	86	7	20070517a	
L08A	42.19	-118.34 SKS	2.1	.1	82	7	20070906a	
L08A	42.19	-118.34 SKS	2.4	.2	-72	4	20070131a	
L08A	42.19	-118.34 SKS	2.6	.2	63	8	20070420a	
L08A	42.19	-118.34 SKS	.8	.1	-68	5	20060807a	
L08A	42.19	-118.34 SKS	.8	.1	-69	5	20060807a	
L08A	42.19	-118.34 SKS	1.0	.2	87	5	20060917a	
L08A	42.19	-118.34 SKS	1.1	.1	-69	9	20070403a	
L08A	42.19	-118.34 SKS	2.0	.2	-88	3	20070325a	
L08A	42.19	-118.34 SKS	2.1	.3	81	7	20070516a	
L08A	42.19	-118.34 SKS	2.2	.3	-86	4	20070517a	
L08A	42.19	-118.34 SKS	2.4	.2	-82	4	20061009a	
L08A	42.19	-118.34 SKS	2.4	.3	-73	5	20070131a	
L08A	42.19	-118.34 SKS	2.7	.3	88	5	20070529b	

SU	PPLEM	ENTA	RY INFORM	IATIO	N			DOI: 10.1038/NGEO526
	L09A	42.01	-117.67 SKS	1.5	.2	-81	10	20070517a
	L09A	42.01	-117.67 SKS	1.5	.1	-59	8	20070928b
	L09A	42.01	-117.67 SKS	2.1	.1	-86	7	20070906a
	L09A	42.01	-117.66 SKS	.8	.1	-60	5	20060807a
	L09A	42.01	-117.66 SKS	.9	.2	-89	5	20060917a
	L09A	42.01	-117.66 SKS	2.5	.2	70	6	20070325a
	L10A	42.07	-116.47 SKS	1.2	.2	-39	9	20070927a
	L10A	42.07	-116.47 SKS	1.9	.2	-76	6	20070906a
	L10A	42.07	-116.47 SKS	2.1	.2	-76	8	20070718a
	L10A	42.07	-116.47 SKS	2.2	.2	78	8	20070420a
	L10A	42.07	-116.47 SKS	.5	.1	-51	8	20070614a
	L10A	42.07	-116.47 SKS	1.3	.3	87	5	20070517a
	L10A	42.07	-116.47 SKS	1.4	.3	-83	6	20070602a
	L10A	42.07	-116.47 SKS	1.6	.2	-83	3	20070516a
	L10A	42.07	-116.47 SKS	2.3	.3	-72	7	20070718a
	L11A	42.16	-115.75 SKS	.2	.2	-46	6	20070614a
	L11A	42.16	-115.75 SKS	.5	0	-54	4	20070529b
	L11A	42.16	-115.75 SKS	.8	.2	-50	9	20070628a
	L11A	42.16	-115.75 SKS	.9	.2	-67	7	20070403a
	L11A	42.16	-115.75 SKS	1.3	.2	-70	9	20070404c
	L11A	42.16	-115.75 SKS	1.9	.3	-76	5	20070517a
	L11A	42.16	-115.75 SKS	1.3	.1	-45	6	20070927a
	L11A	42.16	-115.75 SKS	1.4	.1	-68	9	20070727a
	L11A	42.16	-115.75 SKS	1.6	.1	-89	6	20070404c
	L11A	42.16	-115.75 SKS	2.4	.1	-69	2	20070906a

DOI: 10.1038/NGEO5	26		S	UPPLI	EMENT	ARY	INFORMATION
L12A	42.14	-115.01 SKS	1.4	.3	-81	9	20070516a
L12A	42.14	-115.02 SKS	1.1	.1	-42	5	20070927a
L12A	42.14	-115.02 SKS	1.8	.2	77	8	20070420a
L12A	42.14	-115.02 SKS	2.9	.2	-59	4	20070906a
L13A	42.08	-113.94 SKS	.7	.1	-65	6	20070404c
LRL	35.48	-117.68 SKS	1.6	.2	-59	7	20050516a
LRL	35.48	-117.68 SKS	2.2	.2	-47	3	20051015a
M01C	41.84	-124.12 SKS	2.0	.2	47	6	20070816a
M02C	41.39	-122.85 SKS	1.5	.2	32	10	20070926a
M02C	41.39	-122.85 SKS	1.7	.2	86	6	20070726a
M04C	41.78	-121.84 SKS	1.6	.2	61	10	20070726a
M05C	41.35	-121.15 SKS	1.1	.1	67	10	20070726a
M05C	41.35	-121.15 SKS	1.4	.2	40	10	20070421a
M06C	41.20	-120.48 SKS	1.4	0	63	4	20070726a
M06C	41.20	-120.48 SKS	2.3	.2	58	4	20070906a
M07A	41.38	-119.17 SKS	1.7	.1	-53	9	20070404c
M07A	41.38	-119.17 SKS	1.9	.1	78	4	20070517a
M07A	41.38	-119.17 SKS	2.2	.2	-79	7	20070820a
M07A	41.38	-119.17 SKS	2.4	.2	-84	6	20070529b
M07A	41.38	-119.17 SKS	2.4	.1	79	6	20070906a
M07A	41.38	-119.17 SKS	1.6	.3	83	5	20060916a
M07A	41.38	-119.17 SKS	1.9	.2	87	8	20070517a
M08A	41.44	-118.38 SKS	1.3	.1	-77	8	20070927a
M08A	41.44	-118.38 SKS	1.8	.2	-84	8	20070404c
M08A	41.44	-118.38 SKS	2.0	.1	77	6	20070727a

SUF	PLEM	ENTA	RY INFORM	ATION				DOI: 10.1038/NGEO526
	M08A	41.44	-118.38 SKS	2.0	.2	79	7	20070517a
	M08A	41.44	-118.38 SKS	2.2	.2	79	6	20070820a
	M08A	41.44	-118.38 SKS	2.4	0	90	3	20070906a
	M08A	41.44	-118.37 SKS	.9	.2	-72	6	20060807a
	M08A	41.44	-118.37 SKS	1.8	.1	-78	7	20070718a
	M08A	41.44	-118.37 SKS	1.9	.2	-67	7	20070403a
	M08A	41.44	-118.37 SKS	2.7	.1	-88	3	20060916a
	M09A	41.42	-117.45 SKS	.8	.1	-65	6	20060807a
	M09A	41.42	-117.45 SKS	1.8	.1	88	10	20070906a
	M09A	41.42	-117.45 SKS	1.9	.3	-73	9	20060811a
	M09A	41.42	-117.45 SKS	2.0	.2	-73	8	20070517a
	M09A	41.42	-117.45 SKS	2.0	.2	-88	4	20070928b
	M09A	41.42	-117.45 SKS	2.6	.2	66	8	20060903a
	M10A	41.52	-116.54 SKS	.6	.2	-50	5	20070529a
	M10A	41.52	-116.54 SKS	.9	.3	61	9	20060916a
	M10A	41.52	-116.54 SKS	1.0	.2	-56	5	20061003a
	M10A	41.52	-116.54 SKS	1.1	.1	-69	4	20060807a
	M10A	41.52	-116.54 SKS	1.3	.2	-74	9	20070404a
	M10A	41.52	-116.54 SKS	1.3	.3	-81	7	20070718a
	M10A	41.52	-116.54 SKS	1.5	.2	-87	9	20070727a
	M10A	41.52	-116.54 SKS	1.6	.2	88	6	20070928b
	M10A	41.52	-116.54 SKS	1.7	.2	-74	5	20070517a
	M10A	41.52	-116.54 SKS	1.9	.2	-76	6	20070906a
	M11A	41.43	-115.79 SKS	1.4	.1	81	8	20070906a
	M11A	41.43	-115.79 SKS	1.6	.2	61	6	20070727a

DOI: 10.1038/NGEO52	26		S	UPPL	EMENT	ARY	INFORMATION
M11A	41.43	-115.79 SKS	.6	.1	-76	6	20060807a
M11A	41.43	-115.79 SKS	.8	.3	-76	7	20070403a
M11A	41.43	-115.79 SKS	.9	.2	-83	8	20070404a
M11A	41.43	-115.79 SKS	1.4	.2	83	6	20060903a
M12A	41.41	-114.91 SKS	.5	.2	75	6	20070325a
M12A	41.41	-114.91 SKS	.6	.1	-58	7	20060807a
M12A	41.41	-114.91 SKS	.6	.2	-43	7	20060815a
M12A	41.41	-114.91 SKS	.7	.1	-72	6	20060516a
M12A	41.41	-114.91 SKS	1.0	.2	-58	7	20070403a
M12A	41.41	-114.91 SKS	1.0	.2	-64	7	20061003a
M13A	41.36	-114.16 SKS	.5	.2	-63	8	20070404a
M13A	41.36	-114.16 SKS	.6	.1	-64	5	20070404a
M13A	41.36	-114.16 SKS	.7	.1	-60	4	20060807a
M13A	41.36	-114.16 SKS	.7	.2	-46	6	20070529a
M13A	41.36	-114.16 SKS	.8	.3	-43	8	20061017a
MDW	38.89	-112.36 SKS	1.0	.2	-19	12	19950625b
MNV	38.43	-118.15 SKS	.4	.1	44	9	20050604a
MNV	38.43	-118.15 SKS	.4	.2	-87	6	20030821a
MNV	38.43	-118.15 SKS	.5	.2	-39	9	20060530a
MNV	38.43	-118.15 SKS	.5	.2	35	7	19990826a
MNV	38.43	-118.15 SKS	.6	.2	-78	7	20000815a
MNV	38.43	-118.15 SKS	.7	.1	51	6	20010605a
MNV	38.43	-118.15 SKS	.9	.2	86	9	20011218a
MNV	38.43	-118.15 SKS	.9	.3	37	9	20030311a
MNV	38.43	-118.15 SKS	1.0	.2	-67	7	20030930b

SUP	PLEM	ENTAF	RY INFORM	ATION				DOI: 10.1038/NGEO526
	MNV	38.43	-118.15 SKS	1.1	.2	87	6	20040722a
	MNV	38.43	-118.15 SKS	1.6	.2	-66	5	19950625a
	MNV	38.43	-118.15 SKS	1.7	.3	-80	9	20051015a
	MNV	38.43	-118.15 SKS	2.0	.1	-71	5	20030711a
	MPM	36.05	-117.49 SKS	2.1	.2	-66	4	20051121a
	N06A	40.74	-119.83 SKS	1.4	.1	66	8	20070726a
	N06A	40.74	-119.83 SKS	1.5	.2	61	10	20070117a
	N06A	40.74	-119.83 SKS	1.7	.2	51	8	20070820a
	N06A	40.74	-119.83 SKS	1.9	.1	73	4	20070906a
	N06A	40.74	-119.83 SKS	.7	.2	-84	7	20060903a
	N06A	40.74	-119.83 SKS	.8	.2	44	8	20070722a
	N06A	40.74	-119.83 SKS	.8	.3	43	9	20070722a
	N06A	40.74	-119.83 SKS	1.0	.2	-85	8	20070516a
	N06A	40.74	-119.83 SKS	1.4	.2	69	6	20070121a
	N06A	40.74	-119.83 SKS	1.6	.1	62	7	20070325a
	N06A	40.74	-119.83 SKS	1.6	.3	71	9	20060916a
	N07B	40.77	-118.97 SKS	.7	.1	49	7	20060916a
	N07B	40.77	-118.97 SKS	.9	.2	-75	7	20070404a
	N07B	40.77	-118.97 SKS	1.1	.2	63	8	20070121a
	N07B	40.78	-118.97 SKS	2.3	.1	-87	4	20070906a
	NØ8A	40.78	-118.13 SKS	1.9	.1	-73	4	20070906a
	NØ8A	40.78	-118.13 SKS	.2	.1	-54	3	20070529a
	N08A	40.78	-118.13 SKS	.4	.1	-52	5	20060815a
	N08A	40.78	-118.13 SKS	. 8	.3	-66	7	20070404a
	N08A	40.78	-118.13 SKS	1.0	.2	-67	6	20061003a

DOI: 10.1038/NGEO526	5			SU	PPLEN	ΛΕΝΤΑ	ARY IN	FORMATION
NØ8A	40.78	-118.13	SKS 1	1.0	.2	-85	8	20070517a
NØ8A	40.78	-118.13	SKS 2	1.1	.3	-79	6	20070602a
N08A	40.78	-118.13	SKS 2	1.1	.3	-82	6	20070516a
N08A	40.78	-118.13	SKS 2	1.2	.1	-68	4	20070718a
N09A	40.85	-117.52	SKS 2	1.8	.1	-85	6	20070906a
N09A	40.85	-117.52	SKS	.6	.2	-65	7	20060807a
N09A	40.85	-117.52	SKS	.6	.2	-65	7	20060807a
N09A	40.85	-117.52	SKS .	.9	.1	-70	5	20070404a
N09A	40.85	-117.52	SKS	.9	.1	-78	5	20060516a
N09A	40.85	-117.52	SKS	.9	.2	-80	6	20060516a
N09A	40.85	-117.52	SKS .	.9	.2	59	8	20060916a
N09A	40.85	-117.52	SKS 1	1.4	.3	-77	8	20070516a
N09A	40.85	-117.52	SKS 2	1.8	.2	86	5	20061009a
N09A	40.85	-117.52	SKS 1	1.8	.2	86	5	20061009a
N10A	40.71	-116.50	SKS .	.6	.2	54	7	20070722a
N10A	40.71	-116.50	SKS .	.9	.2	-63	8	20061003a
N10A	40.71	-116.50	SKS .	.9	.2	-65	9	20070404a
N11A	40.81	-115.73	SKS .	.2	.2	9	9	20060917a
N11A	40.81	-115.73	SKS	.4	.2	-63	7	20060807a
N11A	40.81	-115.73	SKS	.6	.2	-56	3	20061003a
N11A	40.81	-115.73	SKS	.7	.2	56	7	20070722a
N11A	40.81	-115.73	SKS	.8	.2	-62	9	20070404a
N11A	40.81	-115.73	SKS	.8	.2	79	6	20061009a
N11A	40.81	-115.73	SKS	.8	.3	-79	7	20070131a
N11A	40.81	-115.73	SKS 1	1.5	.2	-65	7	20060903a

SUF	PLEM	ENTAF	RY INFC	DRMA	TION				DOI: 10.1038/NGEO526
	N12A	40.85	-115.04 S	SKS	.9	.1	-89	10	20070906a
	N12A	40.85	-115.04 S	SKS	1.9	.2	-84	2	20070816a
	N12A	40.85	-115.03 S	SKS	.5	.1	-43	6	20070529a
	N12A	40.85	-115.03 S	SKS	.5	.2	-42	9	20070628a
	N12A	40.85	-115.03 S	SKS	.6	.3	-55	8	20070404a
	N12A	40.85	-115.03 S	SKS	1.0	.1	-57	6	20061003a
	N12A	40.85	-115.03 S	SKS	1.0	.2	-54	6	20070403a
	N12A	40.85	-115.03 S	SKS	1.2	.3	-83	7	20070420b
	N13A	40.85	-114.20 S	SKS	.5	.2	-37	5	20070722a
	N13A	40.85	-114.20 S	SKS	.7	.2	-63	6	20061003a
	N13A	40.85	-114.20 S	SKS	.8	.1	-59	4	20060807a
	N13A	40.85	-114.20 S	SKS	1.0	.2	-31	6	20060916a
	N14A	40.85	-113.18 S	SKS	.6	.2	-61	7	20070404a
	N14A	40.85	-113.18 S	SKS	.7	.2	-39	9	20070614a
	N14A	40.85	-113.18 S	SKS	.9	.2	-43	7	20070529a
	N14A	40.85	-113.18 S	SKS	1.0	.4	-44	8	20070628a
	N15A	40.89	-112.52 S	SKS	.5	.2	-45	8	20070614a
	N15A	40.89	-112.52 S	SKS	.6	.3	-38	7	20070722a
	NEE	34.82	-114.60 S	SKS	1.1	.1	89	6	19950823a
	NEE	34.82	-114.60 S	SKS	1.3	.2	63	12	20000226a
	NV31	38.43	-118.15 S	SKS	1.0	.2	61	7	20050116a
	NV31	38.43	-118.15 S	SKS	1.0	.2	61	8	20050116a
	NV31	38.43	-118.15 S	SKS	1.1	.1	-79	5	20030930b
	NV31	38.43	-118.15 S	SKS	1.1	.1	-82	5	20030930b
	NV31	38.43	-118.15 S	SKS	1.2	.2	89	7	20040722a

DOI: 10.1038/NGEO52	26			SUPPL	EMEN	TARY	INFORMATIO	Ν
NV31	38.43	-118.15 SKS	1.2	.2	89	7	20040722a	
NV31	38.43	-118.15 SKS	1.4	.2	88	6	20041015a	
NV31	38.43	-118.15 SKS	1.4	.2	88	6	20041015a	
NV31	38.43	-118.15 SKS	1.5	.2	-77	8	20050906a	
NV31	38.43	-118.15 SKS	1.5	.2	-77	8	20050906a	
NV31	38.43	-118.15 SKS	1.8	.2	-40	8	20060526a	
NV31	38.43	-118.15 SKS	1.8	.4	-81	9	20051015a	
NV31	38.43	-118.15 SKS	2.2	.3	-67	5	20051121a	
NV31	38.43	-118.15 SKS	2.2	.3	-67	5	20051121a	
NV32	38.33	-118.29 SKS	.1	.1	60	8	20030814a	
NV32	38.33	-118.29 SKS	.8	0	73	5	20030930b	
NV32	38.33	-118.29 SKS	.8	.1	67	8	20030930b	
NV32	38.33	-118.29 SKS	1.0	.2	-71	8	20041015a	
NV32	38.33	-118.29 SKS	1.4	0	-79	4	20050205c	
NV32	38.33	-118.29 SKS	1.4	0	-79	4	20050205c	
NV33	38.48	-118.41 SKS	.4	.1	-87	5	20040810a	
NV33	38.48	-118.41 SKS	.5	0	14	6	20040207a	
NV33	38.48	-118.41 SKS	.5	.2	20	9	20040528a	
NV33	38.48	-118.41 SKS	.6	.1	-2	6	20040513a	
NV33	38.48	-118.41 SKS	.7	.1	14	9	20040728a	
NV33	38.48	-118.41 SKS	.7	.2	-14	8	20041008a	
NV33	38.48	-118.41 SKS	.8	.1	16	6	20041126a	
004C	40.32	-121.09 SKS	1.4	.1	48	8	20070726a	
004C	40.32	-121.09 SKS	1.6	.2	76	8	20070820a	
004C	40.32	-121.09 SKS	2.3	.2	42	8	20070317a	

SUP	PLEM	ENTAF	RY INF	ORMA	TION				DOI: 10.1038/NGEO52
	006A	40.16	-119.82	SKS	.3	.2	44	7	20070529a
	006A	40.16	-119.82	SKS	.4	.2	51	9	20070529a
	006A	40.16	-119.82	SKS	.5	.2	51	9	20070722a
	006A	40.16	-119.82	SKS	1.0	.1	10	7	20060917a
	007A	40.16	-118.87	SKS	.3	.1	6	6	20060917a
	007A	40.16	-118.87	SKS	.4	.1	44	8	20060528a
	007A	40.16	-118.87	SKS	.5	.2	59	9	20060916a
	007A	40.16	-118.87	SKS	.5	.2	60	9	20070121a
	008A	40.29	-118.15	SKS	.3	.2	-62	9	20070529a
	008A	40.29	-118.15	SKS	.5	.3	-10	6	20060917a
	008A	40.29	-118.15	SKS	.6	.2	-84	8	20070404a
	008A	40.29	-118.15	SKS	.8	.4	88	9	20070517a
	008A	40.29	-118.15	SKS	1.3	.3	86	9	20070602a
	009A	40.16	-117.19	SKS	.5	.2	54	9	20070722a
	009A	40.16	-117.19	SKS	1.0	.2	-64	6	20061003a
	009A	40.16	-117.19	SKS	1.3	.3	-74	7	20070718a
	009A	40.16	-117.19	SKS	1.4	.2	-58	7	20070403a
	010A	40.29	-116.50	SKS	.3	.2	-54	7	20061003a
	010A	40.29	-116.50	SKS	.4	.2	47	9	20070614a
	010A	40.29	-116.50	SKS	.4	.2	54	9	20070722a
	010A	40.29	-116.50	SKS	.8	.2	-76	5	20070517a
	010A	40.29	-116.50	SKS	.8	.3	-76	6	20070516a
	010A	40.29	-116.50	SKS	.9	.3	-76	9	20060903a
	010A	40.29	-116.50	SKS	1.0	.2	-77	9	20060903a
	011A	40.13	-115.65	SKS	.5	.1	-70	8	20070404a

DOI: 10.1038/NGEO52	6			SUP	PLEN	IENTA	RY IN	FORMATION
012A	40.26	-114.74	SKS .4	1.	1	-52	8	20070529a
012A	40.26	-114.74	SKS .4	٩ . <i>ت</i>	2	-83	9	20070517a
012A	40.26	-114.74	SKS .5	5.	1	-66	6	20060807a
012A	40.26	-114.74	SKS .5	5.	1	-79	7	20060602a
012A	40.26	-114.74	SKS .6	5.2	2	-71	9	20061003a
012A	40.26	-114.74	SKS .8	3.2	2	-39	9	20070722a
013A	40.13	-113.98	SKS .6	5.2	2	-43	4	20070722a
013A	40.13	-113.98	SKS .8	3.2	1	-51	9	20070628a
013A	40.13	-113.98	SKS .9		2	-44	8	20070614a
P06A	39.67	-119.89	SKS .7	7 .2	2	57	6	20070722a
P08A	39.69	-118.08	SKS .7	7 .2	2	-82	5	20060516a
P09A	39.55	-117.14	SKS .5	5.	2	51	8	20070722a
P10A	39.62	-116.46	SKS 2.	.2 .2	2	-72	6	20070420b
P10A	39.62	-116.46	SKS .3	3.2	2	44	9	20061017a
P10A	39.62	-116.46	SKS .6	5.2	2	56	8	20070722a
P10A	39.62	-116.46	SKS .6	5.5	3	53	9	20060916a
P11A	39.55	-115.75	SKS .6	5.2	2	-51	6	20061017a
P11A	39.55	-115.75	SKS .6	5.2	2	-72	5	20070403a
P12A	39.47	-114.91	SKS .6	5.	2	-25	10	20070628a
P12A	39.47	-114.90	SKS .4	1.2	2	-82	8	20060903a
P12A	39.47	-114.90	SKS .6	5.	1	-45	5	20061017a
P12A	39.47	-114.90	SKS .6	5.	1	-56	7	20070628a
P12A	39.47	-114.90	SKS .6	5.2	2	-36	6	20070722a
P15A	39.57	-112.28	SKS 1.	.5 .2	2	-8	4	20070722b
P16A	39.60	-111.66	SKS .8	3.2	1	-45	14	20070722a

SUF	PLEM	ENTAF	RY INF	ORMA	TION				DOI: 10.1038/NGEO526
	Q07A	38.93	-118.80	SKS	.6	.2	43	8	20070628a
	Q07A	38.93	-118.80	SKS	.7	.2	43	8	20070529a
	Q07A	38.93	-118.80	SKS	.7	.2	69	7	20070121a
	Q08A	38.86	-117.93	SKS	.5	.2	39	9	20060815a
	Q08A	38.86	-117.93	SKS	.5	.2	40	7	20061017a
	Q08A	38.86	-117.93	SKS	.5	.2	82	6	20061009a
	Q08A	38.86	-117.93	SKS	.8	.3	-29	7	20070529a
	Q08A	38.86	-117.93	SKS	.9	.1	39	6	20060528a
	Q08A	38.86	-117.93	SKS	.9	.3	44	9	20070421a
	Q08A	38.86	-117.93	SKS	1.0	.1	38	9	20070529a
	Q08A	38.86	-117.93	SKS	.8	.1	69	4	20060516a
	Q09A	38.83	-117.18	SKS	.2	.2	44	8	20061017a
	Q09A	38.83	-117.18	SKS	.3	.2	36	8	20070529a
	Q10A	38.82	-116.40	SKS	.4	.2	14	8	20070517a
	Q10A	38.82	-116.40	SKS	.8	.3	39	9	20070616a
	Q11A	38.84	-115.65	SKS	.2	0	41	8	20070529a
	Q11A	38.84	-115.65	SKS	.3	.2	47	9	20061017a
	Q11A	38.84	-115.65	SKS	.3	.2	53	7	20070421a
	Q12A	39.04	-114.83	SKS	.4	.2	-39	9	20070722a
	R08A	38.34	-118.10	SKS	.4	.2	37	6	20061017a
	R08A	38.34	-118.10	SKS	.5	.2	56	8	20070121a
	R08A	38.34	-118.10	SKS	.7	.3	-80	6	20070517a
	R09A	38.23	-117.07	SKS	.3	.1	49	9	20061107a
	R09A	38.23	-117.07	SKS	.3	.2	63	9	20070529a
	R09A	38.23	-117.07	SKS	.4	.2	-85	9	20070517a

DOI: 10.1038/NGEO52	6			SUPPLE	MEN	TARY	INFORMATION	Ν
RØ9A	38.23	-117.07 SKS	.7	.3	58	8	20070722a	
R12A	38.32	-114.60 SKS	.3	.1	43	6	20070628a	
R12A	38.32	-114.60 SKS	.5	.1	23	8	20070403a	
R17A	38.41	-110.71 SKS	.9	.2	8	8	20070927a	
R17A	38.41	-110.71 SKS	1.6	.2	9	6	20070727a	
S08C	37.49	-118.17 SKS	1.3	.3	67	9	20070121a	
S08C	37.49	-118.17 SKS	1.5	.2	66	9	20060916a	
S08C	37.49	-118.17 SKS	1.8	.2	86	5	20051121a	
S08C	37.49	-118.17 SKS	2.7	.1	74	3	20070529a	
S09A	37.72	-117.22 SKS	.3	.1	40	8	20070614a	
S09A	37.72	-117.22 SKS	.6	.2	62	9	20060916a	
S09A	37.72	-117.22 SKS	.8	.3	62	9	20070117a	
S10A	37.92	-116.59 SKS	.3	.2	-56	6	20070628a	
S10A	37.92	-116.59 SKS	.4	.1	-58	5	20070614a	
S10A	37.92	-116.59 SKS	.4	.2	-85	7	20070517a	
S11A	37.64	-115.74 SKS	.4	.2	70	8	20070722a	
S13A	37.58	-113.86 SKS	.7	.1	67	12	20070913c	
S13A	37.58	-113.86 SKS	1.2	.2	55	11	20070504a	
S13A	37.58	-113.86 SKS	1.3	.2	62	4	20070816a	
S14A	37.76	-113.16 SKS	.4	.1	59	7	20070529a	
S17A	37.63	-110.80 SKS	1.5	.2	74	2	20070816a	
SLA	35.89	-117.28 SKS	.9	.2	-86	11	19990420a	
SLA	35.89	-117.28 SKS	1.3	.1	88	6	20060516a	
SLA	35.89	-117.28 SKS	1.5	.2	-70	14	20040307a	
T11A	37.24	-115.22 SKS	.5	.2	-85	8	20070517a	

SUF	PLEM	ENTA	RY INFO	RMAT	ION			DOI: 10.1038/NGEO52
	T12A	36.72	-114.71 Sk	(S.2	.1	44	7	20070529a
	T14A	37.06	-113.08 Sk	<s.5< td=""><td>.2</td><td>51</td><td>7</td><td>20070529a</td></s.5<>	.2	51	7	20070529a
	T14A	37.06	-113.08 Sk	<s 1.<="" td=""><td>4.3</td><td>20</td><td>9</td><td>20070403a</td></s>	4.3	20	9	20070403a
	T14A	37.06	-113.08 SK	<s.8< td=""><td>.1</td><td>39</td><td>13</td><td>20070402b</td></s.8<>	.1	39	13	20070402b
	T15A	37.01	-112.38 SK	<s 1.<="" td=""><td>2.2</td><td>64</td><td>4</td><td>20070816a</td></s>	2.2	64	4	20070816a
	T16A	36.98	-111.51 SK	<s.9< td=""><td>.1</td><td>70</td><td>5</td><td>20070816a</td></s.9<>	.1	70	5	20070816a
	ТАКО	43.74	-124.08 SK	KS 1.	2.1	67	9	20070726a
	ТРН	38.07	-117.22 Sk	(S7	.2	79	10	20050205c
	TPH	38.07	-117.22 Sk	(S7	.2	70	11	20011012a
	ТРН	38.07	-117.22 Sk	<s.8< td=""><td>0</td><td>83</td><td>8</td><td>19970525a</td></s.8<>	0	83	8	19970525a
	ТРН	38.07	-117.22 SK	<s.8< td=""><td>.2</td><td>-86</td><td>14</td><td>19970904a</td></s.8<>	.2	-86	14	19970904a
	ТРН	38.07	-117.22 SK	(S 1.	3.2	-73	7	20040722a
	ТРН	38.07	-117.22 SK	KS 1.4	4.2	-57	5	20030930b
	ТРН	38.07	-117.22 Sk	(S 1	4.2	53	11	20070930d
	ТРН	38.07	-117.22 Sk	<s.4< td=""><td>.1</td><td>40</td><td>5</td><td>20020228a</td></s.4<>	.1	40	5	20020228a
	ТРН	38.07	-117.22 Sk	<s.4< td=""><td>.1</td><td>54</td><td>7</td><td>20021017a</td></s.4<>	.1	54	7	20021017a
	ТРН	38.07	-117.22 Sk	<s.4< td=""><td>.1</td><td>59</td><td>6</td><td>20040207a</td></s.4<>	.1	59	6	20040207a
	TPH	38.07	-117.22 Sk	<s.4< td=""><td>.1</td><td>61</td><td>6</td><td>20040728a</td></s.4<>	.1	61	6	20040728a
	TPH	38.07	-117.22 Sk	<s.4< td=""><td>.2</td><td>40</td><td>9</td><td>20020228a</td></s.4<>	.2	40	9	20020228a
	ТРН	38.07	-117.22 Sk	<s.5< td=""><td>.1</td><td>47</td><td>8</td><td>20040513a</td></s.5<>	.1	47	8	20040513a
	TPH	38.07	-117.22 Sk	<s.5< td=""><td>.2</td><td>17</td><td>9</td><td>20061017a</td></s.5<>	.2	17	9	20061017a
	TPH	38.07	-117.22 SK	<s.5< td=""><td>.3</td><td>61</td><td>8</td><td>20010911a</td></s.5<>	.3	61	8	20010911a
	TPH	38.07	-117.22 Sk	KS .6	.1	46	9	20030725a
	ТРН	38.07	-117.22 Sk	KS .6	.1	70	5	20050205a
	ТРН	38.07	-117.22 SK	<s.6< td=""><td>.1</td><td>80</td><td>7</td><td>20041015a</td></s.6<>	.1	80	7	20041015a

DOI: 10.1038/NGEO52	6			SUPPLE	MEN	TARY	INFORMATION
TPH	38.07	-117.22 SKS	.6	.1	83	6	19990920a
ТРН	38.07	-117.22 SKS	.6	.1	84	5	19990920a
ТРН	38.07	-117.22 SKS	.6	.1	88	7	19970503a
ТРН	38.07	-117.22 SKS	.6	.2	-79	5	20030930a
ТРН	38.07	-117.22 SKS	.6	.2	19	9	20070529a
ТРН	38.07	-117.22 SKS	.6	.2	70	8	20010614a
ТРН	38.07	-117.22 SKS	.6	.2	71	8	20050205a
ТРН	38.07	-117.22 SKS	.6	.2	79	9	19991211a
ТРН	38.07	-117.22 SKS	.6	.2	81	7	20010817a
ТРН	38.07	-117.22 SKS	.6	.2	82	6	20010817a
ТРН	38.07	-117.22 SKS	.6	.2	82	7	20041015a
ТРН	38.07	-117.22 SKS	.6	.3	0	9	20061107a
ТРН	38.07	-117.22 SKS	.7	.1	-87	4	20030930a
ТРН	38.07	-117.22 SKS	.7	.1	62	8	20011012a
ТРН	38.07	-117.22 SKS	.7	.1	79	9	19991211a
ТРН	38.07	-117.22 SKS	.8	.1	-83	5	20030504a
ТРН	38.07	-117.22 SKS	.8	.1	79	6	19970503a
ТРН	38.07	-117.22 SKS	.8	.1	88	5	19970525a
ТРН	38.07	-117.22 SKS	.8	.1	89	6	19970525a
ТРН	38.07	-117.22 SKS	.8	.2	-75	7	20000614a
ТРН	38.07	-117.22 SKS	.8	.2	-75	7	20000614a
ТРН	38.07	-117.22 SKS	.8	.2	-86	7	20050723a
ТРН	38.07	-117.22 SKS	.8	.2	79	9	20040722a
ТРН	38.07	-117.22 SKS	.9	.1	-83	8	20000815a
ТРН	38.07	-117.22 SKS	.9	.1	-83	6	20050516a

SUF	PLEM	DOI: 10.1038/NGEO526						
	ТРН	38.07	-117.22 SKS	.9	.1	-84	4	20000815a
	ТРН	38.07	-117.22 SKS	.9	.1	87	5	19970904a
	TPH	38.07	-117.22 SKS	1.0	.2	88	6	20040519a
	TPNV	36.94	-116.24 SKS	.7	0	65	6	19950823a
	TPNV	36.94	-116.24 SKS	.7	.1	68	7	19950823a
	TUQ	35.43	-115.92 SKS	1.0	.2	-89	10	20070928b
	TUQ	35.43	-115.92 SKS	1.6	.1	-85	6	20040602a
	TUQ	35.43	-115.92 SKS	1.6	.2	79	9	20050117a
	U10A	36.41	-116.33 SKS	.3	.1	39	8	20061017a
	U10A	36.41	-116.33 SKS	.5	.2	47	9	20070722a
	U10A	36.41	-116.33 SKS	.6	.2	20	9	20070404a
	U11A	36.42	-115.38 SKS	.5	.1	46	8	20061017a
	U12A	36.43	-114.54 SKS	.7	.1	40	10	20070628a
	U12A	36.43	-114.54 SKS	1.0	.2	48	6	20071013a
	U12A	36.43	-114.54 SKS	1.4	.2	41	14	20070403a
	U12A	36.43	-114.53 SKS	.7	.2	47	8	20061107a
	U12A	36.43	-114.53 SKS	.7	.2	48	8	20061017a
	U12A	36.43	-114.53 SKS	1.0	.2	56	8	20060815a
	U12A	36.43	-114.53 SKS	1.6	.4	77	8	20070529a
	U14A	36.41	-113.18 SKS	.8	.1	46	10	20070402b
	U14A	36.41	-113.18 SKS	1.6	.2	63	5	20070816a
	U14A	36.41	-113.18 SKS	1.7	.1	44	8	20070715a
	U17A	36.60	-110.66 SKS	1.1	.2	66	6	20070816a
	UT54	37.41	-110.51 SKS	.8	.2	45	14	20000717a
	UT54	37.41	-110.51 SKS	1.7	.2	53	4	20010109a

DOI: 10.10)38/NGEO526	5			SUPPL		TARY	INFORMATION	N
	V11A	35.83	-115.43 SKS	S.2	.2	-83	6	20070517a	
	V11A	35.83	-115.43 SK	S.5	.2	49	7	20070722a	
	V11A	35.83	-115.43 SK	S.7	.2	50	9	20070722a	
	V12A	35.72	-114.85 SK	S.4	.2	37	8	20061107a	
	V12A	35.72	-114.85 SKS	S.5	.1	38	7	20070529a	
	V12A	35.72	-114.85 SKS	S.6	.1	-81	6	20060903a	
	V12A	35.72	-114.85 SKS	S 1.9	.1	37	7	20070501a	
	V13A	35.85	-113.98 SK	S 1.1	.1	56	4	20070816a	
	V13A	35.85	-113.98 SK	S 1.9	.2	23	8	20070731c	
	V14A	35.63	-113.11 SKS	S 1.3	.1	51	4	20070816a	
	V15A	35.81	-112.17 SKS	S 1.0	.2	26	14	20070928b	
	VTV	34.56	-117.33 SK	S 1.1	.2	66	12	20020814a	
	VTV	34.56	-117.33 SK	S 1.7	.1	-81	5	20051015a	
	W13A	35.09	-113.89 SK	S.9	.1	51	12	20070723a	
	W13A	35.09	-113.89 SK	S 1.0	.1	32	6	20070628a	
	W13A	35.09	-113.89 SK	S 1.1	.1	62	6	20070816a	
	W13A	35.09	-113.89 SK	S 2.0	.2	25	6	20070731c	
	W14A	35.21	-113.08 SK	S 1.0	.1	52	4	20070816a	
	W15A	35.17	-112.27 SK	S.8	.2	25	14	20070402b	
	W15A	35.17	-112.27 SK	S 1.3	0	37	5	20070816a	
	W15A	35.17	-112.27 SK	S 1.6	.2	44	8	20070618a	
	W15A	35.17	-112.27 SKS	S 1.7	.2	32	6	20070723a	
	WHA00	35.87	-117.73 SKS	S 1.1	.2	-73	10	19990420a	
	WHAS5	35.85	-117.74 SKS	S 1.1	.2	-75	7	19990420a	
	WUAZ	35.51	-111.37 SK	S 1.2	.2	29	13	20030912a	

SUP	UPPLEMENTARY INFORMATION									
	WUAZ	35.51	-111.37 SKS	1.3	.2	56	6	20020924b		
	WUAZ	35.51	-111.37 SKS	1.4	.1	65	4	20070816a		
	WUAZ	35.51	-111.37 SKS	1.7	.2	30	10	20070805a		
	WUAZ	35.51	-111.37 SKS	2.2	.1	19	2	20020917a		
	WVOR	42.43	-118.64 SKS	1.7	.2	72	8	20070726a		
	WVOR	42.43	-118.64 SKS	2.3	.1	-89	6	20070906a		
	WVOR	42.43	-118.64 SKS	2.8	.2	81	5	20070131a		
	YBH	41.73	-122.71 SKS	1.1	.1	78	8	20070726a		
	ҮВН	41.73	-122.71 SKS	1.4	.2	20	8	20070731c		

Supplementary Table 2: List of events for shear wave splitting measurements.

Event ID, events used for measurements in Supplementary Table 1; GMT, Greenwich Mean Time.

Event_ID Magnitu	Time(GMT) de(mb)	Latitud	e(∫N)	Longitu	de(∫E)	Depth(km)
19950117a	16:54:12	-20.87	-179.22	637	6.0	
19950505a	03:53:47	12.62	125.31	33	6.2	
19950625a	02:10:41	-3.28	150.36	45	6.3	
19950625b	06:59:05	24.60	121.71	47	5.8	
19950629a	12:24:03	-19.46	169.24	144	6.2	
19950703a	19:50:50	-29.20	-177.61	33	6.5	
19950823a	07:06:02	18.86	145.19	596	6.3	
19960827a	06:24:07	-22.57	-179.79	575	6.0	
19961105a	09:41:34	-31.16	180.00	369	5.9	
19970503a	16:46:02	-31.79	-179.38	108	6.6	
19970525a	23:22:33	-32.12	179.79	333	6.2	
19970813a	04:45:04	25.03	125.77	55	6.0	
19970904a	04:23:37	-26.57	178.34	625	6.3	
19990420a	19:04:08	-31.89	-179.04	96	6.2	
19990719a	02:17:03	-28.63	-177.61	39	6.3	
19990801a	08:39:04	-30.37	-177.83	10	6.4	
19990826a	01:24:42	10.38	126.01	63	6.1	
19990913a	11:55:28	40.71	30.05	13	5.8	
19990920a	17.47.18	23.77	120.98	33	6.2	
19991101a	17:53:00	23.38	121.52	33	6.1	

19991126a	02:56:07	-30.23	-177.68	33	5.9
19991211a	07:18:41	-13.91	167.19	203	5.8
20000226a	08:11:48	13.80	144.78	132	6.0
20000610a	09:17:53	-11.45	166.24	33	5.9
20000614a	02:15:25	-25.52	178.05	605	5.9
20000621a	16:25:06	14.11	144.96	112	6.0
20000717a	22:53:47	36.28	70.92	141	6.0
20000815a	04:30:08	-31.51	179.73	358	6.0
20010109a	16:49:28	-14.93	167.17	103	6.3
20010603a	02:41:57	-29.67	-178.63	178	6.8
20010605a	15:13:58	-6.82	146.41	10	5.8
20010614a	02:35:25	24.51	122.03	32	5.9
20010817a	22:25:49	25.75	126.19	33	5.9
20010911a	14:56:50	-0.58	133.13	33	5.8
20011012a	15:02:16	12.69	144.98	37	6.7
20011218a	04:02:58	23.96	122.73	14	6.3
20020228a	01:50:48	-5.69	151.26	40	6.0
20020610a	22:48:36	10.99	140.69	33	5.9
20020630a	21:29:36	-22.20	179.25	620	6.5
20020814a	13:12:39	7.83	136.88	10	6.1
20020819a	11:01:01	-21.70	-179.51	580	6.7
20020917a	11:20:23	-3.28	142.77	10	5.9
20020924b	04:13:11	-10.54	161.20	10	6.2
20021004a	19:05:48	-20.99	-179.02	621	6.1
20021017a	04:23:55	-19.84	-178.40	628	6.4

OI: 10.1038/NGEO526		SU	PPLEN	ΛΕΝΤΑ	ARY INFORMATION
20021210a	01:28:33	-50.03	-114.12	10	6.0
20030311a	07:27:32	-4.69	153.24	40	6.0
20030427a	16:03:40	-20.94	169.77	77	6.0
20030504a	13:15:18	-30.53	-178.23	62	6.0
20030513a	21:21:14	-17.29	167.74	33	6.0
20030711a	13:53:24	9.34	122.04	33	5.9
20030725a	09:37:45	-1.53	149.69	24	6.4
20030814a	05:14:54	39.16	20.61	10	6.2
20030821a	04:02:09	29.05	59.77	20	5.8
20030912a	06:55:55	-5.27	151.50	50	5.8
20030930a	15:22:31	-30.49	-177.18	33	6.0
20030930b	14:08:37	-30.44	-177.40	10	5.8
20040207a	02:42:35	-4.00	135.02	10	6.2
20040307a	11:08:01	-32.38	-178.19	7	5.9
20040513a	09:58:43	-3.58	150.73	10	5.8
20040519a	07:04:11	22.66	121.50	20	5.8
20040528a	12:38:44	36.25	51.62	17	6.2
20040602a	22:39:29	-30.48	-177.88	28	5.8
20040722a	09:45:14	26.49	128.89	21	6.1
20040728a	03:56:28	-0.44	133.09	13	6.0
20040810a	01:47:32	36.44	70.80	207	6.0
20041008a	08:27:53	-10.95	162.16	36	6.1
20041015a	04:08:50	24.53	122.69	94	6.4
20041126a	02:25:03	-3.61	135.40	10	6.2
20050116a	08:25:04	-25.59	-176.30	16	6.0

20050117a	10:50:32	10.99	140.68	12	5.9
20050205a	03:34:25	16.01	145.87	143	6.3
20050205c	12:23:18	5.29	123.34	525	6.4
20050210a	16:53:19	-23.10	169.22	9	6.0
20050516a	03:54:14	-32.59	-179.35	34	6.2
20050604a	14:50:48	-6.34	146.81	43	6.0
20050711a	23:06:01	-27.00	-176.32	10	6.0
20050723a	07:34:56	35.50	139.98	61	6.1
20050906a	01:16:02	24.08	122.19	32	5.8
20051015a	15:51:07	25.32	123.36	183	6.2
20051121a	15:36:30	31.02	130.00	145	5.9
20060218a	15:59:22	-5.19	152.05	44	5.9
20060226a	03:08:27	-23.61	-179.99	535	5.9
20060516a	10:39?23	-31.78	-179.31	152	6.8
20060526a	22:53:58	-7.96	110.45	13	6.0
20060528a	03:12:08	-5.72	151.13	34	5.9
20060530a	03:28:52	-3.77	140.06	30	5.9
20060602a	07:31:36	-20.84	-178.70	592	6.0
20060624a	21:15:00	-0.39	123.19	26	5.8
20060807a	22:18:54	-15.80	167.79	141	6.0
20060811a	20:54:14	2.40	96.35	22	5.8
20060815a	03:05:10	-4.67	126.73	10	6.1
20060903a	22:57:30	-24.05	178.82	568	5.9
20060916a	02:22:50	41.36	135.70	367	5.9

6.2

20060917a

09:34:14

-31.75 -67.18 142

DOI: 10.1038/NGEO526		SU	PPLEN	ΛΕΝΤΑ	ARY INFORMATION
20061003a	18:03:14	-18.87	169.00	171	5.9
20061009a	10:01:46	20.65	120.02	10	6.0
20061017a	11:25:02	-5.88	150.98	32	6.4
20061107a	13:25:36	-21.73	-68.20	121	5.8
20070117a	04:28:26	-3.32	139.83	101	6.0
20070121a	11:27:45	1.07	126.28	22	6.7
20070130a	04:54:50	-54.74	146.30	11	6.2
20070131a	03:15:52	-29.78	-178.00	34	6.1
20070317a	17:42:26	1.13	126.22	35	6.0
20070325a	00:40:01	-20.62	169.36	34	6.5
20070402a	10:49:17	-7.23	156.24	34	5.8
20070402b	12:02:23	-8.71	157.62	14	6.0
20070403a	03:35:07	36.45	70.69	222	6.2
20070403c	20:26:09	-20.63	168.99	12	6.0
20070404a	00:39:43	-7.14	156.05	10	5.9
20070404c	11:00:27	-20.71	168.83	10	5.8
20070420a	00:26:40	25.72	125.09	10	6.1
20070420b	01:45:56	25.71	125.11	9	5.9
20070421a	07:12:48	-3.55	151.27	407	5.8
20070501a	01:45:23	-7.17	155.11	10	5.8
20070504a	12:06:52	-1.41	-14.91	10	5.9
20070516a	08:56:16	20.50	100.75	24	6.4
20070517a	19:29:10	-30.66	-178.20	41	6.0
20070529a	01:03:27	-4.59	151.84	133	5.9
20070529b	09:36:05	-1.07	127.34	24	6.0

20070602a	21:34:57	23.03	101.05	5	6.3
20070614a	13:37:40	-36.21	-100.15	10	5.9
20070614b	17:41:04	-5.65	151.56	41	5.8
20070616a	01:18:47	1.15	126.41	47	5.8
20070616b	04:23:57	-7.26	155.51	10	5.8
20070618a	06:18:48	-3.57	150.95	26	6.2
20070628a	02:52:09	-7.97	154.63	10	6.3
20070715a	09:27:34	-15.38	168.60	8	6.0
20070717a	09:39:27	-26.21	-177.74	10	6.0
20070718a	00:07:35	-26.30	-177.74	10	5.8
20070722a	10:49:35	-2.80	141.66	10	5.8
20070722b	14:20:43	-2.78	141.72	10	5.8
20070723a	00:08:32	-4.47	149.85	572	5.9
20070726a	05:40:16	2.87	127.46	25	6.4
20070727a	14:46:26	-21.46	170.94	10	6.0
20070731c	22:55:31	-0.16	-17.80	11	6.2
20070805a	09:28:40	-19.15	168.72	45	6.0
20070816a	08:39:27	-9.83	159.47	10	6.1
20070820a	13:46:17	6.13	127.38	8	6.4
20070820b	21:30:45	-5.39	140.88	10	5.9
20070906a	17:51:26	24.34	122.22	53	6.1
20070913c	09:48:46	3.80	126.33	35	6.2
20070926a	12:36:26	-4.99	153.50	40	6.2
20070927a	19:57:44	-21.10	169.28	9	6.2
20070928b	01:01:48	-21.21	169.36	10	5.8

DOI: 10.1038/NGEO526		SL	JPPLEN	MEN	TARY INFORMATION
20070928f	13:38:59	22.01	142.67	276	6.7
20070930d	15:02:18	10.52	145.59	24	5.8
20071013a	17:45:53	-21.23	169.20	37	5.8